(For the candidates admitted from 2017 – 2018 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER-2020.

First Semester

Mathematics

Elective — NUMERICAL ANALYSIS

Time: Three hours Maximum: 75 marks

PART A — $(10 \times 2 = 20 \text{ marks})$

Answer ALL questions.

- 1. Define the Power series solution.
- 2. Write the formula for Milne's Predictor-Corrector method.
- 3. Write Modified Euler's formula.
- 4. Find the first approximation of $\frac{dy}{dx} = x^2 + y^2, y(0) = 1 \text{ by Picard's method.}$
- 5. Define the Fourth order Runge-Kutta method for simultaneous equations.

- 6. Define Fourth order Runge-Kutta method.
- 7. Define Lattice points.
- 8. State Standard Five point formula.
- 9. Write the Bender-Schmidt recurrence equation.
- 10. Write the residuals at u_0 and u_1 in relaxation method.

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL the questions.

11. (a) Solve $y' = y^2 + x$, y(0) = 1 using Taylor's series method to compute y(0.1) and y(0.2).

Or

- (b) Given $y' = \frac{1}{x+y}$, y(0) = 2, y(0.2) = 2.0933, y(0.4) = 2.1755, y(0.6) = 2.2493, find y(0.8) by Milne's predictor corrector method.
- 12. (a) Solve $\frac{dy}{dx} = 1 y$, y(0) = 0 in the range $0 \le x \le 0.2$ using improved Euler's method.

Or

 2

(b) Use Picard's method to approximate the value of y when x=0.1, 0.2, 0.3, 0.4 and 0.5, given that y=1 at x=0 and y=1+xy, correct to three decimal places.

13. (a) Find y(1.2) by Runge-Kutta method of fourth order given $y'=x^2+y^2$; y(1)=1.5.

Or

- (b) Given $y' = x^2 y$, y(0) = 1, find y(0.1), y(0.2) using Runge Kutta method of second order. $y' = f(x, y) = x^2 - y$, $x_0 = 0$, $y_0 = 1$, $f(x_0, y_0) = -1$.
- 14. (a) Classify the following partial differential equation $(x+1)u_{xx}-2(x+2)u_{xy}+(x+3)u_{yy}=0$.

Or

- (b) Explain the Liebmann's iteration process.
- 15. (a) Derive Bender-Schmidt recurrence equation.

Or

(b) Derive the Crank-Nicholson difference scheme.

PART C — $(3 \times 10 = 30 \text{ marks})$

Answer any THREE questions.

- 16. Find y(0.1), y(0.2), y(0.3), from $y'=x^2-y$; y(0)=1 using Taylor's series method and hence obtain y(0.4) using Adams-Bashforth method.
- 17. Solve y' = -y; y(0)=1 for y(0.04) by (i) Euler's method and (ii) Modified Euler's method.

3

S.No. 259

- 18. Solve $\frac{dy}{dx} = yz + x$; $\frac{dz}{dx} = xz + y$ given that y(0) = 1; z(0) = -1 for y(0.2), z(0.2).
- 19. Solve $u_{xx} + u_{yy} = 0$ over the square mesh of side 4 units satisfying the following boundary conditions:
 - (a) $u(0,y)=0 \text{ for } 0 \le y \le 4$
 - (b) $u(4,y)=12+y \text{ for } 0 \le y \le 4$
 - (c) $u(x,0) = 3x \text{ for } 0 \le y \le 4$
 - (d) $u(x,4)=x^2 \text{ for } 0 \le y \le 4$.
- 20. Solve $\nabla^2 u = 8x^2 + y^2$ for square mesh given u = 0 on the four boundaries dividing the square into 16 sub-squares of length 1 units.